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Abstract
A new sum rule has been derived for the atomic force constants from the
invariance of the potential energy under the rigid body rotation of a crystal.
For instance, it is found that there are actually two force constants in the nearest-
neighbour approximation of a face-centred cubic (FCC) lattice, rather than three
force constants, as usually supposed.

1. Introduction

In lattice dynamics, it is generally assumed that the interaction between atoms can be described
by a set of atomic force constants [1, 2]. The atomic force constants must satisfy certain
relations resulting from the symmetry of the lattice. Furthermore, they also must satisfy the
sum rule resulting from invariance under the rigid body translation and rotation of a crystal.
The sum rule from the rigid body translation can be obtained easily. However, the sum rule
from the rigid body rotation seems not to have been established satisfactorily. A rotation sum
rule was given first by Born and Huang, and repeated by Leibfried [3] and Maradudin et al
[2]. Their sum rule was derived by requiring that no extra force will be produced under a
small rigid body rotation. As pointed out by Gazis and Wallis [4], the Born–Huang sum rule
is a necessary condition, but not a sufficient condition, for rotation invariance. In fact, for the
simple Bravais lattice, the Born–Huang sum rule is a trivial identity. A few years later, Gazis
and Wallis derived a sum rule by acquiring that no potential energy be produced under a small
rigid body rotation [4]. However, in analogy to the Born–Huang sum rule, the sum rule given
by Gazis and Wallis is also a trivial identity in the case of the simple Bravais lattice. It is not a
complete set of necessary and sufficient conditions as they claimed.

In this paper, a new rotation sum rule has been derived by requiring that the potential
energy be invariant under a small rigid body rotation of a crystal. It is no longer a trivial
identity for the simple Bravais lattice. It can be applied generally and it yields new constraint
relations.
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2. The rotation sum rule

In this section, the new rotation sum rule is presented first and then proved in detail. Let us
consider a crystal specified by a set of lattice vectors R that locate each cell of the crystal.
Each cell contains r atoms, whose equilibrium positions are specified by vectors R + dα

(α = 1, 2, . . . r), where dα is the position vector of the αth atom relative to lattice point R.
For the atom α in cell R, the displacement relative to the equilibrium position will be denoted
by uα(R), and the force by fα(R). The components in Cartesian coordinates will be labelled by
subscript Latin characters, for example, force components f αi (R) (i =, 1, 2, 3), displacement
components uαi (R) (i =, 1, 2, 3), etc. In the harmonic approximation, the force acting on an
atom is a linear function of the displacements relative to the equilibrium configuration

f αi (R) = −
∑

R′
Cαβ

i j (R,R′)uβj (R
′), (1)

where the coefficients Cαβ

i j (R,R′) are the atomic force constants. The atomic force constants
can be obtained from the potential energy � of a crystal,

Cαβ

i j (R,R′) = ∂2�

∂uαi (R)∂uβj (R
′)
, (2)

where the derivatives are evaluated with all the atoms at the equilibrium positions. Let us
decompose the atomic force constants Cαβ

i j (R) into the symmetric and antisymmetric parts

Cαβ

i j (R) = Sαβi j (R)+ T αβ

i j (R)

with

Sαβi j (R) = Sαβj i (R) = 1
2 [Cαβ

i j (R)+ Cαβ

j i (R)],
T αβ

i j (R) = −T αβ

j i (R) = 1
2 [Cαβ

i j (R)− Cαβ

j i (R)],
and introduce

�mn = − 1
4

∑

R

Sαβi j (R)εmikεn jl(Rk + dαk − dβk )(Rl + dαl − dβl )

+ 1
2

∑

R

T αβ

i j (R)εmikεn jl(Rk + dαk )d
β

l , (3)

where εmik is the completely antisymmetric three-order tensor with ε123 = 1, εmik = −εimk =
−εmki ; dαk is the position vector of the αth atom relative to the lattice point R, and the
convention that repeated indices are summed is used for brevity. The new rotation sum rule
asserts that

�mn = −�nm, (4)

i.e. ψmn is antisymmetric. In general, six constraint relations will be obtained from the sum
rule.

In the following, the sum rule is derived in detail. Obviously, if the higher-order terms are
neglected, the potential energy � can be expressed as

� = �0 + 1
2

∑

R,R′
Cαβ

i j (R,R′)uαi (R)u
β

j (R
′), (5)

where �0 is a constant corresponding to the cohesive energy. Because of the translation
symmetry of the crystal, Cαβ

i j (R,R′) depends on R and R′ only through their difference R−R′,

Cαβ

i j (R,R′) = Cαβ

i j (R − R′). (6)
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Because the mix-partial derivative is independent of the order in which the differential are
carried out, it follows from equation (2) that

Cαβ

i j (R − R′) = Cβα

j i (R
′ − R).

If the atoms in a crystal move uniformly,

uαi (R) = ui ,

i.e. the crystal has a rigid body displacement, there must be no force acting on the atoms. As a
consequence, the atomic force constants must satisfy the following translation sum rule:

∑

R′,β
Cαβ

i j (R − R′) =
∑

R,β

Cαβ

i j (R) = 0. (7)

Apparently, Sαβi j (R) and T αβ

i j (R) satisfy the same translation sum rule,
∑

R

∑

β

Sαβi j (R) =
∑

R

∑

α

Sαβi j (R) = 0,

∑

R

∑

β

T αβ

i j (R) =
∑

R

∑

α

T αβ

i j (R) = 0.

In terms of Sαβi j (R) and T αβ

i j (R), the potential energy can be divided into three parts:

� = �0 +�S +�T ,

with

�S = 1
2

∑

R,R′
Sαβi j (R − R′)uαi (R)u

β

j (R
′),

�T = 1
2

∑

R,R′
T αβ

i j (R − R′)uαi (R)u
β

j (R
′).

It is crucial to observe that �S can be changed into

�S = 1
4

∑

R,R′
Sαβi j (R − R′)[uαi (R)− uβi (R

′)][uβj (R′)− uαj (R)], (8)

which depends on the atomic position through relative displacement between two atoms. The
proof is simple: expanding the right-hand side of equation (8), we have
1
4

∑

R,R′
Sαβi j (R − R′)[uαi (R)uβj (R′)+ uβi (R

′)uαj (R)− uαi (R)u
α
j (R)− uβi (R

′)uβj (R
′)]

= 1
2

∑

R,R′
Sαβi j (R − R′)uαi (R)u

β

j (R
′)− 1

4

∑

R

uαi (R)u
α
j (R)

∑

R′,β
Sαβi j (R − R′)

− 1
4

∑

R′
uβi (R

′)uβj (R
′)

∑

R,α

Sαβi j (R − R′),

where the symmetric property Sαβi j = Sαβj i has been used and the order of the summation has
been rearranged. By virtue of the translation sum rule, we see that the last two terms have
vanished and the first term is just the symmetric part �S.

Next, let us investigate the change of �S and �T caused by an infinitesimal rigid body
rotation of a crystal. Consider the displacement resulting from an infinitesimal rigid body
rotation of the crystal,

uαi (R) = ωi j(R j + dαj ), (9)

where the parameters ωi j are the elements of an infinitesimal antisymmetric matrix

ωi j = −ω j i .

3
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Substituting the expression of the displacement, equation (9), resulting from an infinitesimal
rigid body rotation into �S, we have

�S = 1
4

∑

R,R′
Sαβi j (R − R′)ωik(Rk + dαk − R′

k − dβk )ω jl(R
′
l + dβl − Rl − dαl ).

Because the term in the sum only depends on the relative lattice vector, the summation over
lattice vectors R and R′ can be carried out by summing the lattice vectors and the relative
lattice vector, and �S is given by

�S = − N

4

∑

R

Sαβi j (R)ωik(Rk + dαk − dβk )ω jl(Rl + dαl − dβl ), (10)

where N is the total number of primitive cells of the crystal. Equation (10) can be obtained in
a more transparent way. It is apparent that the uniformity is kept after a rigid body rotation,
i.e. all the cells are still equivalent. Thus,�S can be obtained by considering the contribution of
a typical cell and then multiplying by the number of cells; that is just the result of equation (10).

The antisymmetric matrix ωi j can be expressed in terms of the completely antisymmetric
three-order tensor εki j

ωi j = θkεki j , (11)

where θk, k = 1, 2, 3 are rotational parameters. Substituting ωi j into equation (10), we have

�S = − N

4

∑

R

Sαβi j (R)θmεmik(Rk + dαk − dβk )θnεn jl(Rl + dαl − dβl ). (12)

�T can be handled in the same way. Substituting equation (9) into the expression for �T ,
we have

�T = 1
2

∑

R,R′
T αβ

i j (R − R′)ωik(Rk + dαk )ω jl(R
′
l + dβl )

= 1
2

∑

R,R′
T αβ

i j (R)ωik(Rk + R′
k + dαk )ω jl(R

′
l + dβl ). (13)

Paying attention to the fact that
∑

R′
R′ = 0,

and using the translation sum rule, it is easy to obtain

�T = N

2

∑

R

T αβ

i j (R)ωik(Rk + dαk )ω jld
β

l

= N

2

∑

R

T αβ

i j (R)θmεmik(Rk + dαk )θnεn jld
β

l . (14)

The potential energy should be invariant under a rigid body rotation of a crystal. From
equations (12) and (14), we finally arrive at

− 1
4

∑

R

Sαβi j (R)θmεmik(Rk + dαk − dβk )θnεn jl(Rl + dαl − dβl )

+ 1
2

∑

R

T αβ

i j (R)θmεmik(Rk + dαk )θnεn jld
β

l = 0. (15)

In terms of �mn defined by equation (3), equation (15) can be written as

�mnθmθn = 0. (16)

4
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Because θm(m = 1, 2, 3) is an arbitrary parameter, equation (16) implies that �mn is
antisymmetric:

�mn = −�nm .

This is the new rotational sum rule equation (4) derived from requiring that the potential energy
of a crystal should be invariant under a small rigid body rotation.

Sometimes, the atomic force constants are given in wavevector space. The atomic force
constants in real space and in wavevector space are related through the Fourier transformation

Cαβ

i j (R) = 1

�∗

∫

BZ
C̃αβ

i j (q)e
−iq·R dq,

C̃αβ

i j (q) =
∑

R

Cαβ

i j (R)e
iq·R,

where �∗ is the volume of the Brillouin zone. It is easy to see that
∑

R

Cαβ

i j (R) = C̃αβ

i j (0),

∑

R

Cαβ

i j (R)Rl = 1

i

∂C̃αβ

i j

∂ql

∣∣∣∣∣
q=0

,

and �mn can be expressed as

�mn = −1

4
εmikεn jl

(
1

i

∂

∂qk
+ dαk − dβk

) (
1

i

∂

∂ql
+ dαl − dβl

)
S̃αβi j

∣∣∣∣
q=0

+ 1

2
εmikεn jl

(
1

i

∂

∂qk
+ dαk

)
dβl T̃ αβ

i j

∣∣∣∣
q=0

, (17)

where S̃αβi j and T̃ αβ

i j are the symmetric and antisymmetric parts of C̃αβ

i j . In particular, for a
simple Bravais lattice, �mn is simplified as

�mn = − 1
4

∑

R

Ci j(R)εmikεn jl Rk Rl

= 1

4
εmikεn jl

∂2C̃i j

∂qk∂ql

∣∣∣∣∣
q=0

, (18)

where the atomic indices α, β have been removed since every primitive cell contains only one
atom.

3. Discussion and summary

In order to clearly compare the results given by the different sum rules, the simple Bravais
lattice is considered in this section. For the simple Bravais lattice, the sum rule given by Born
and Huang can be written as [1, 2]

∑

R

[Ci j(R)Rl − Cil(R)R j ] = 0, (19)

where Ci j (R) is the atomic force constant; the Greek indices α, β have been removed. Because
there always exists inverse symmetry for a simple Bravais lattice, the atomic force constant is
an even function of the lattice vector,

Ci j (−R) = Ci j (R), (20)

5
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and ∑

R

Ci j(R)Rl =
∑

R

Ci j(−R)(−Rl) = −
∑

R

Ci j(R)Rl = 0,

the summation over R in equation (19) vanishes. Therefore, the constraint relation
equation (19) is automatically satisfied by the atomic force constants of a simple Bravais lattice.

The work by Gazis and Wallis is extremely relevant to ours. Their sum rule was also
derived on the basis of invariance of the potential energy. However, the main results are
different. For the simple Bravais lattice, the sum rule derived by Gazis and Wallis can be
expressed as∑

R,R′
{[Cik(R − R′)(R j − R0

j )− C jk(R − R′)(Ri − R0
i )](R′

l − R0
l )

+ [C jl(R − R′)(Ri − R0
i )− Cil(R − R′)(R j − R0

j )](R′
k − R0

k )} = 0. (21)

Introducing relative lattice vector r = R − R′, and changing the sum over R′ into the sum over
r, the left-hand side of equation (21) becomes∑

R,r

{[Cik(r)(R j − R0
j )− C jk(r)(Ri − R0

i )](Rl − R0
l − rl)

+ [C jl(r)(Ri − R0
i )− Cil(r)(R j − R0

j )](Rk − R0
k − rk)}

=
∑

R,r

{
[Cik(r)(R j − R0

j )(Rl − R0
l )− C jk(r)(Ri − R0

i )(Rl − R0
l )

+ C jl(r)(Ri − R0
i )(Rk − R0

k )− Cil(r)(R j − R0
j )(Rk − R0

k )]
−

∑

R,r

[Cik(r)rl(R j − R0
j )− C jk(r)rl(Ri − R0

i )

+ C jl(r)rk(Ri − R0
i )− Cil(r)rk(R j − R0

j )]
}
. (22)

By using the translation sum rule, equation (7), we see that the first sum in the last expression
of equation (22) vanishes. By using the inverse symmetry of the simple Bravais lattice, the
second sum vanishes, too. Therefore, in analogy to the Born–Huang sum rule, Gazis–Wallis
sum rule is also a trivial identity for the simple Bravais lattice.

In contrast, the new sum rule can provide substantial relationships for the atomic force
constants. For example, substituting the atomic force constants of the face-centred cubic (FCC)
lattice given in [5] into equation (4), we obtain the following constraint relation:

α1 + β1 − γ1 + 2β2 + 2α3 + 10β3 − 2γ3 − 8ε3 = 0, (23)

where α1, α2, α3 · · · are the first, second and third atomic force constants, respectively. This
constraint relation has not been mentioned before. If only the nearest-neighbour atoms are
considered, the constraint relation becomes

α1 + β1 − γ1 = 0. (24)

Therefore, the three force constants α1, β1 and γ1 are not independent. There are only two free
force constants in the nearest-neighbour approximation of an FCC lattice. In the FCC example,
α1 and β1−γ1 are the transverse force constants (β1+γ1 is the longitudinal force constant). This
indicates that the constraint is mainly imposed on the transverse force constants. In fact, if all
the transverse force constants vanish, the potential energy will be invariant under rotation, and
so the sum rule will be automatically satisfied by the force constants. For a simple cubic (SC)
lattice, there is only one force constant in the first-neighbour approximation. The transverse
force constant is fixed to be zero by the sum rule. As a consequence, the shear modulus become

6
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zero in the first-neighbour approximation. However, it can be shown that the shear modulus is
free if the second-neighbour interaction is introduced. When the distant-neighbour force are
considered, the number of force constants increases rapidly and the meaning of force constants
becomes obscure. A crucial question is: what relationships should be satisfied by the force
constant introduced? The sum rule presented here gives us a new necessary condition that must
be satisfied.

In Gazis and Wallis’s paper, they presented another sum rule for the symmetric atomic
force constants1. This sum rule cannot be obtained from their first sum rule which has
been claimed to be the complete set of necessary and sufficient conditions. This sum rule
is consistent with our result. Obviously, for the symmetric atomic force constants, our sum rule
degenerates into the second sum rule given by Gazis and Wallis.

In summary, a general rotation sum rule has been presented for the atomic force constants.
The sum rule can be applied easily and can yield new constraint relations that should be satisfied
by the atomic force constants.
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